Category Archives: materi kimia kelas X

Tata Nama Senyawa dan Persamaan Reaksi

Standard

tatanama senyawa kimia

Tata Nama Senyawa Sederhana
1). Tata Nama Senyawa Molekul ( Kovalen ) Biner.

Senyawa biner adalah senyawa yang hanya terdiri dari dua jenis unsur.

Contoh : air (H 2 O), amonia (NH 3 )

a). Rumus Senyawa

Unsur yang terdapat lebih dahulu dalam urutan berikut, ditulis di depan.

B-Si-C-Sb-As-P-N-H-Te-Se-S-I -Br-Cl-O-F
Contoh : ………(lengkapi sendiri)

b). Nama Senyawa

Nama senyawa biner dari dua jenis unsur non logam adalah rangkaian nama kedua jenis unsur tersebut dengan akhiran –ida (ditambahkan pada unsur yang kedua).

Contoh : ………(lengkapi sendiri)
Catatan :

Jika pasangan unsur yang bersenyawa membentuk lebih dari sejenis senyawa, maka senyawa-senyawa yang terbentuk dibedakan dengan menyebutkan angka indeks dalam bahasa Yunani.

1 = mono 2 = di 3 = tri 4 = tetra

5 = penta 6 = heksa 7 = hepta 8 = okta

9 = nona 10 = deka

Angka indeks satu tidak perlu disebutkan, kecuali untuk nama senyawa karbon monoksida.

Contoh : ……….(lengkapi sendiri)

c). Senyawa yang sudah umum dikenal, tidak perlu mengikuti aturan di atas.

Contoh : ………(lengkapi sendiri)

2). Tata Nama Senyawa Ion.

Kation = ion bermuatan positif (ion logam)

Anion = ion bermuatan negatif (ion non logam atau ion poliatom)

a). Rumus Senyawa

Unsur logam ditulis di depan.

Contoh : ………(lengkapi sendiri)

Rumus senyawa ion ditentukan oleh perbandingan muatan kation dan anionnya.

Kation dan anion diberi indeks sedemikian rupa sehingga senyawa bersifat netral ( jumlah muatan positif = jumlah muatan negatif).

b). Nama Senyawa

Nama senyawa ion adalah rangkaian nama kation (di depan) dan nama anionnya (di belakang); sedangkan angka indeks tidak disebutkan.

Contoh : ………(lengkapi sendiri)
Catatan :

Ø Jika unsur logam mempunyai lebih dari sejenis bilangan oksidasi, maka senyawa-senyawanya dibedakan dengan menuliskan bilangan oksidasinya (ditulis dalam tanda kurung dengan angka Romawi di belakang nama unsur logam itu).

Contoh : ………(lengkapi sendiri)

Ø Berdasarkan cara lama, senyawa dari unsur logam yang mempunyai 2 jenis muatan dibedakan dengan memberi akhiran –o untuk muatan yang lebih rendah dan akhiran – i untuk muatan yang lebih tinggi.

Contoh : ………(lengkapi sendiri)

Cara ini kurang informatif karena tidak menyatakan bilangan oksidasi unsur logam yang bersangkutan.

3). Tata Nama Senyawa Terner.

Senyawa terner sederhana meliputi : asam, basa dan garam.

Reaksi antara asam dengan basa menghasilkan garam.

a). Tata Nama Asam.

Asam adalah senyawa hidrogen yang di dalam air mempunyai rasa masam.

Rumus asam terdiri atas atom H (di depan, dianggap sebagai ion H + ) dan suatu anion yang disebut sisa asam .

Catatan : perlu diingat bahwa asam adalah senyawa molekul, bukan senyawa ion.

Nama anion sisa asam = nama asam yang bersangkutan tanpa kata asam.

Contoh : H 3 PO 4

Nama asam = asam fosfat

Rumus sisa asam = PO 4 3- (fosfat)

b). Tata Nama Basa.

Basa adalah zat yang jika di dalam air dapat menghasilkan ion OH-

Pada umumnya, basa adalah senyawa ion yang terdiri dari kation logam dan anion

Nama basa = nama kationnya yang diikuti kata hidroksida .

Contoh : ………(lengkapi sendiri)

c). Tata Nama Garam.

Garam adalah senyawa ion yang terdiri dari kation basa dan anion sisa asam .

Rumus dan penamaannya = senyawa ion.

Contoh : ………(lengkapi sendiri)

4). Tata Nama Senyawa Organik.

Senyawa organik adalah senyawa-senyawa C dengan sifat-sifat tertentu.

Senyawa organik mempunyai tata nama khusus, mempunyai nama lazim atau nama dagang ( nama trivial ).

 

 

Persamaan reaksi

Menggambarkan reaksi kimia yang terdiri atas rumus kimia pereaksi dan hasil reaksi disertai dengan koefisiennya masing-masing.

1). Menuliskan Persamaan Reaksi.

o Reaksi kimia mengubah zat-zat asal (pereaksi = reaktan ) menjadi zat baru (produk).

o Jenis dan jumlah atom yang terlibat dalam reaksi tidak berubah, tetapi ikatan kimia di antaranya berubah.

o Ikatan kimia dalam pereaksi diputuskan dan terbentuk ikatan baru dalam produknya.

o Atom-atom ditata ulang membentuk produk reaksi.

Contoh :

Keterangan :

  • Tanda panah menunjukkan arah reaksi (artinya = membentuk atau bereaksi menjadi).
  • Huruf kecil dalam tanda kurung menunjukkan wujud atau keadaan zat yang bersangkutan ( g = gass, l = liquid, s = solid dan aq = aqueous / larutan berair ).
  • Bilangan yang mendahului rumus kimia zat disebut koefisien reaksi (untuk menyetarakan atom-atom sebelum dan sesudah reaksi).
  • Koefisien reaksi juga menyatakan perbandingan paling sederhana dari partikel zat yang terlibat dalam reaksi.

Ø Penulisan persamaan reaksi dapat dilakukan dengan 2 langkah :

1). Menuliskan rumus kimia zat pereaksi dan produk, lengkap dengan keterangan wujudnya.

2). Penyetaraan, yaitu memberi koefisien yang sesuai sehingga jumlah atom setiap unsur sama pada kedua ruas ( cara sederhana ).

Contoh :
Langkah 1 : (belum setara)

Langkah 2 : (sudah setara)
2). Menyetarakan Persamaan Reaksi.

Langkah-langkahnya ( cara matematis ) :
a). Tetapkan koefisien salah satu zat, biasanya zat yang rumusnya paling kompleks = 1, sedangkan zat lain diberikan koefisien sementara dengan huruf.

b). Setarakan terlebih dahulu unsur yang terkait langsung dengan zat yang diberi koefisien 1 itu.

c). Setarakan unsur lainnya. Biasanya akan membantu jika atom O disetarakan paling akhir.
Contoh :
Langkah 1 :
Persamaan reaksi yang belum setara.

Langkah 2 :
Menetapkan koefisien C 2 H 6 = 1 sedangkan koefisien yang lain ditulis dengan huruf.

Langkah 3 :
Jumlah atom di ruas kiri dan kanan :

Atom Ruas kiri Ruas kanan
C 2 b
H 6 2c
O 2a 2b+c

Langkah 4 :
Jumlah atom di ruas kiri = jumlah atom di ruas kanan.

Dari langkah 3, diperoleh :
b = 2 ……………. (i)
2c = 6 ……………. (ii)
2a = (2b + c) …….. (iii)
Dari persamaan (ii), diperoleh :

2c = 6
c = 6/2 = 3 ………. (iv)
Persamaan (i) dan (iv) disubstitusikan ke persamaan (iii) :

2a = (2b + c) …….. (iii)
2a = {(2).(2) + 3} = 7
a =7/2 …………… (v)

Langkah 5 :
Nilai-nilai a, b dan c disubstitusikan ke persamaan reaksi :

…………..(x 2)

Langkah 6 :
Memeriksa kembali jumlah atom di ruas kiri dan kanan, serta melengkapi wujud zatnya.

Reaksi Reduksi dan Oksidasi

Standard

Redoks (singkatan dari reaksi reduksi/oksidasi) adalah istilah yang menjelaskan berubahnya bilangan oksidasi (keadaan oksidasi) atom-atom dalam sebuah reaksi kimia.

Hal ini dapat berupa proses redoks yang sederhana seperti oksidasi karbon yang menghasilkan karbon dioksida, atau reduksi karbon oleh hidrogen menghasilkan metana(CH4), ataupun ia dapat berupa proses yang kompleks seperti oksidasi gula pada tubuh manusia melalui rentetan transfer elektron yang rumit.

Istilah redoks berasal dari dua konsep, yaitu reduksi dan oksidasi. Ia dapat dijelaskan dengan mudah sebagai berikut:

Walaupun cukup tepat untuk digunakan dalam berbagai tujuan, penjelasan di atas tidaklah persis benar. Oksidasi dan reduksi tepatnya merujuk pada perubahan bilangan oksidasi karena transfer elektron yang sebenarnya tidak akan selalu terjadi. Sehingga oksidasi lebih baik didefinisikan sebagai peningkatan bilangan oksidasi, dan reduksi sebagai penurunan bilangan oksidasi. Dalam prakteknya, transfer elektron akan selalu mengubah bilangan oksidasi, namun terdapat banyak reaksi yang diklasifikasikan sebagai “redoks” walaupun tidak ada transfer elektron dalam reaksi tersebut (misalnya yang melibatkan ikatan kovalen).

Reaksi non-redoks yang tidak melibatkan perubahan muatan formal (formal charge) dikenal sebagai reaksi metatesis.

Dua bagian dalam sebuah reaksi redoks

Besi berkarat

Pembakaran terdiri dari reaksi redoks yang melibatkan radikal bebas

Daftar isi

Oksidator dan reduktor

Senyawa-senyawa yang memiliki kemampuan untuk mengoksidasi senyawa lain dikatakan sebagai oksidatif dan dikenal sebagai oksidator atau agen oksidasi. Oksidator melepaskan elektron dari senyawa lain, sehingga dirinya sendiri tereduksi. Oleh karena ia “menerima” elektron, ia juga disebut sebagai penerima elektron. Oksidator bisanya adalah senyawa-senyawa yang memiliki unsur-unsur dengan bilangan oksidasi yang tinggi (seperti H2O2, MnO4, CrO3, Cr2O72−, OsO4) atau senyawa-senyawa yang sangat elektronegatif, sehingga dapat mendapatkan satu atau dua elektron yang lebih dengan mengoksidasi sebuah senyawa (misalnya oksigen, fluorin, klorin, dan bromin).

Senyawa-senyawa yang memiliki kemampuan untuk mereduksi senyawa lain dikatakan sebagai reduktif dan dikenal sebagai reduktor atau agen reduksi. Reduktor melepaskan elektronnya ke senyawa lain, sehingga ia sendiri teroksidasi. Oleh karena ia “mendonorkan” elektronnya, ia juga disebut sebagai penderma elektron. Senyawa-senyawa yang berupa reduktor sangat bervariasi. Unsur-unsur logam seperti Li, Na, Mg, Fe, Zn, dan Al dapat digunakan sebagai reduktor. Logam-logam ini akan memberikan elektronnya dengan mudah. Reduktor jenus lainnya adalah reagen transfer hidrida, misalnya NaBH4 dan LiAlH4), reagen-reagen ini digunakan dengan luas dalam kimia organik[1][2], terutama dalam reduksi senyawa-senyawa karbonil menjadi alkohol. Metode reduksi lainnya yang juga berguna melibatkan gas hidrogen (H2) dengan katalis paladium, platinum, atau nikel, Reduksi katalitik ini utamanya digunakan pada reduksi ikatan rangkap dua ata tiga karbon-karbon.

Cara yang mudah untuk melihat proses redoks adalah, reduktor mentransfer elektronnya ke oksidator. Sehingga dalam reaksi, reduktor melepaskan elektron dan teroksidasi, dan oksidator mendapatkan elektron dan tereduksi. Pasangan oksidator dan reduktor yang terlibat dalam sebuah reaksi disebut sebagai pasangan redoks.

Contoh reaksi redoks

Salah satu contoh reaksi redoks adalah antara hidrogen dan fluorin:

 \mathrm{H}_{2} + \mathrm{F}_{2} \longrightarrow 2\mathrm {HF}

Kita dapat menulis keseluruhan reaksi ini sebagai dua reaksi setengah: reaksi oksidasi

 \mathrm{H}_{2} \longrightarrow 2\mathrm{H}^{+} + 2e^-

dan reaksi reduksi

 \mathrm{F}_{2} + 2e^- \longrightarrow 2\mathrm{F}^{-}

Penganalisaan masing-masing reaksi setengah akan menjadikan keseluruhan proses kimia lebih jelas. Karena tidak terdapat perbuahan total muatan selama reaksi redoks, jumlah elektron yang berlebihan pada reaksi oksidasi haruslah sama dengan jumlah yang dikonsumsi pada reaksi reduksi.

Unsur-unsur, bahkan dalam bentuk molekul, sering kali memiliki bilangan oksidasi nol. Pada reaksi di atas, hidrogen teroksidasi dari bilangan oksidasi 0 menjadi +1, sedangkan fluorin tereduksi dari bilangan oksidasi 0 menjadi -1.

Ketika reaksi oksidasi dan reduksi digabungkan, elektron-elektron yang terlibat akan saling mengurangi:

\frac{\begin{array}{rcl}
\mathrm{H}_{2} & \longrightarrow & 2\mathrm{H}^{+} + 2e^{-}\\
\mathrm{F}_{2} + 2e^{-} & \longrightarrow & 2\mathrm{F}^{-}
\end{array}}{\begin{array}{rcl}
\mathrm{H}_{2} + \mathrm{F}_{2} & \longrightarrow & 2\mathrm{H}^{+} + 2\mathrm{F}^{-}
\end{array}}

Dan ion-ion akan bergabung membentuk hidrogen fluorida:

\mathrm{H}_{2} + \mathrm{F}_{2}\, \ \longrightarrow \ 2\mathrm{H}^{+} + 2\mathrm{F}^{-}\ \longrightarrow \ 2\mathrm{HF}

Reaksi penggantian

Redoks terjadi pada reaksi penggantian tunggal atau reaksi substitusi. Komponen redoks dalam tipe reaksi ini ada pada perubahan keadaan oksidasi (muatan) pada atom-atom tertentu, dan bukanlah pada pergantian atom dalam senyawa.

Sebagai contoh, reaksi antara larutan besi dan tembaga(II) sulfat:

 \mathrm{Fe} + \mathrm{CuSO}_{4} \longrightarrow \mathrm{FeSO}_{4} + \mathrm{Cu}

Persamaan ion dari reaksi ini adalah:

\mathrm{Fe} + \mathrm{Cu}^{2+} \longrightarrow \mathrm{Fe}^{2+} + \mathrm{Cu}

Terlihat bahwa besi teroksidasi:

\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+} + 2{e}^{-}

dan tembaga tereduksi:

\mathrm{Cu}^{2+} + 2{e}^{-} \longrightarrow \mathrm{Cu}

Contoh-contoh lainnya

  • Besi(II) teroksidasi menjadi besi(III)
\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+} + {e}^{-}
H2O2 + 2 e → 2 OH

Persamaan keseluruhan reaksi di atas adalah:

2Fe2+ + H2O2 + 2H+ → 2Fe3+ + 2H2O
2NO3 + 10e + 12 H+ → N2 + 6H2O
  • Besi akan teroksidasi menjadi besi(III) oksida dan oksigen akan tereduksi membentuk besi(III) oksida (umumnya dikenal sebagai perkaratan):
4Fe + 3O2 → 2 Fe2O3

Reaksi redoks dalam industri

Proses utama pereduksi bijih logam untuk menghasilkan logam didiskusikan dalam artikel peleburan.

Oksidasi digunakan dalam berbagai industri seperti pada produksi produk-produk pembersih.

Reaksi redoks juga merupakan dasar dari sel elektrokimia.

Reaksi redoks dalam biologi

Banyak proses biologi yang melibatkan reaksi redoks. Reaksi ini berlangsung secara simultan karena sel, sebagai tempat berlangsungnya reaksi-reaksi biokimia, harus melangsungkan semua fungsi hidup. Agen biokimia yang mendorong terjadinya oksidasi terhadap substansi berguna dikenal dalam ilmu pangan dan kesehatan sebagai oksidan. Zat yang mencegah aktivitas oksidan disebut antioksidan.

Pernapasan sel, contohnya, adalah oksidasi glukosa (C6H12O6) menjadi CO2 dan reduksi oksigen menjadi air. Persamaan ringkas dari pernapasan sel adalah:

C6H12O6 + 6 O2 → 6 CO2 + 6 H2O
Proses pernapasan sel juga sangat bergantung pada reduksi NAD+ menjadi NADH dan reaksi baliknya (oksidasi NADH menjadu NAD+). Fotosintesis secara esensial merupakan kebalikan dari reaksi redoks pada pernapasan sel:
6 CO2 + 6 H2O + light energy → C6H12O6 + 6 O2

Energi biologi sering disimpan dan dilepaskan dengan menggunakan reaksi redoks. Fotosintesis melibatkan reduksi karbon dioksida menjadi gula dan oksidasi air menjadi oksigen. Reaksi baliknya, pernapasan, mengoksidasi gula, menghasilkan karbon dioksida dan air. Sebagai langkah antara, senyawa karbon yang direduksi digunakan untuk mereduksi nikotinamida adenina dinukleotida (NAD+), yang kemudian berkontribusi dalam pembentukan gradien proton, yang akan mendorong sintesis adenosina trifosfat (ATP) dan dijaga oleh reduksi oksigen. Pada sel-sel hewan, mitokondria menjalankan fungsi yang sama. Lihat pula Potensial membran.

Istilah keadaan redoks juga sering digunakan untuk menjelaskan keseimbangan antara NAD+/NADH dengan NADP+/NADPH dalam sistem biologi seperti pada sel dan organ. Keadaan redoksi direfleksikan pada keseimbangan beberapa set metabolit (misalnya laktat dan piruvat, beta-hidroksibutirat dan asetoasetat) yang antarubahannya sangat bergantung pada rasio ini. Keadaan redoks yang tidak normal akan berakibat buruk, seperti hipoksia, guncangan (shock), dan sepsis.

Siklus redoks

Berbagai macam senyawa aromatik direduksi oleh enzim untuk membentuk senyawa radikal bebas. Secara umum, penderma elektronnya adalah berbagai jenis flavoenzim dan koenzim-koenzimnya. Seketika terbentuk, radikal-radikal bebas anion ini akan mereduksi oskigen menjadi superoksida. Reaksi bersihnya adalah oksidasi koenzim flavoenzim dan reduksi oksigen menjadi superoksida. Tingkah laku katalitik ini dijelaskan sebagai siklus redoks.

Contoh molekul-molekul yang menginduksi siklus redoks adalah herbisida parakuat, dan viologen dan kuinon lainnya seperti menadion. [3]PDF (2.76 MiB)

Menyeimbangkan reaksi redoks

Untuk menuliskan keseluruhan reaksi elektrokimia sebuah proses redoks, diperlukan penyeimbangan komponen-komponen dalam reaksi setengah. Untuk reaksi dalam larutan, hal ini umumnya melibatkan penambahan ion H+, ion OH, H2O, dan elektron untuk menutupi perubahan oksidasi.

Media asam

Pada media asam, ion H+ dan air ditambahkan pada reaksi setengah untuk menyeimbangkan keseluruhan reaksi. Sebagai contoh, ketika mangan(II) bereaksi dengan natrium bismutat:

\mbox{Reaksi tidak seimbang: }\mbox{Mn}^{2+}(aq) + \mbox{NaBiO}_3(s)\rightarrow\mbox{Bi}^{3+}(aq) + \mbox{MnO}_4^{-}(aq)\,
\mbox{Oksidasi: }\mbox{4H}_2\mbox{O}(l)+\mbox{Mn}^{2+}(aq)\rightarrow\mbox{MnO}_4^{-}(aq) + \mbox{8H}^{+}(aq)+\mbox{5e}^{-}\,
\mbox{Reduksi: }\mbox{2e}^{-}+ \mbox{6H}^{+}(aq) + \mbox{BiO}_3^{-}(s)\rightarrow\mbox{Bi}^{3+}(aq) + \mbox{3H}_2\mbox{O}(l)\,

Reaksi ini diseimbangkan dengan mengatur reaksi sedemikian rupa sehingga dua setengah reaksi tersebut melibatkan jumlah elektron yang sama (yakni mengalikan reaksi oksidasi dengan jumlah elektron pada langkah reduksi, demikian juga sebaliknya).

\mbox{8H}_2\mbox{O}(l)+\mbox{2Mn}^{2+}(aq)\rightarrow\mbox{2MnO}_4^{-}(aq) + \mbox{16H}^{+}(aq)+\mbox{10e}^{-}\,
\mbox{10e}^{-}+ \mbox{30H}^{+}(aq) + \mbox{5BiO}_3^{-}(s)\rightarrow\mbox{5Bi}^{3+}(aq) + \mbox{15H}_2\mbox{O}(l)\,

Reaksi diseimbangkan:

\mbox{14H}^{+}(aq) + \mbox{2Mn}^{2+}(aq)+ \mbox{5NaBiO}_3(s)\rightarrow\mbox{7H}_2\mbox{O}(l) + \mbox{2MnO}_4^{-}(aq)+\mbox{5Bi}^{3+}(aq)+\mbox{5Na}^{+}(aq)\,

Hal yang sama juga berlaku untuk sel bahan bakar propana di bawah kondisi asam:

\mbox{Reaksi tidak seimbang: }\mbox{C}_{3}\mbox{H}_{8}+\mbox{O}_{2}\rightarrow\mbox{CO}_{2}+\mbox{H}_{2}\mbox{O}\,
\mbox{Reduksi: }\mbox{4H}^{+} + \mbox{O}_{2}+ \mbox{4e}^{-}\rightarrow\mbox{2H}_{2}\mbox{O}\,
\mbox{Oksidasi: }\mbox{6H}_{2}\mbox{O}+\mbox{C}_{3}\mbox{H}_{8}\rightarrow\mbox{3CO}_{2}+\mbox{20e}^{-}+\mbox{20H}^{+}\,

Dengan menyeimbangkan jumlah elektron yang terlibat:

\mbox{20H}^{+}+\mbox{5O}_{2}+\mbox{20e}^{-}\rightarrow\mbox{10H}_{2}\mbox{O}\,
\mbox{6H}_{2}\mbox{O}+\mbox{C}_{3}\mbox{H}_{8}\rightarrow\mbox{3CO}_{2}+\mbox{20e}^{-}+\mbox{20H}^{+}\,

Persamaan diseimbangkan:

\mbox{C}_{3}\mbox{H}_{8}+\mbox{5O}_{2}\rightarrow\mbox{3CO}_{2}+\mbox{4H}_{2}\mbox{O}\,

Media basa

Pada media basa, ion OH dan air ditambahkan ke reaksi setengah untuk menyeimbangkan keseluruhan reaksi.Sebagai contoh, reaksi antara kalium permanganat dan natrium sulfit:

\mbox{Reaksi takseimbang: }\mbox{KMnO}_{4}+\mbox{Na}_{2}\mbox{SO}_3+\mbox{H}_2\mbox{O}\rightarrow\mbox{MnO}_{2}+\mbox{Na}_{2}\mbox{SO}_{4}+\mbox{KOH}\,
\mbox{Reduksi: }\mbox{3e}^{-}+\mbox{2H}_{2}\mbox{O}+\mbox{MnO}_{4}^{-}\rightarrow\mbox{MnO}_{2}+\mbox{4OH}^{-}\,
\mbox{Oksidasi: }\mbox{2OH}^{-}+\mbox{SO}^{2-}_{3}\rightarrow\mbox{SO}^{2-}_{4}+\mbox{H}_{2}\mbox{O}+\mbox{2e}^{-}\,

Dengan menyeimbangkan jumlah elektron pada kedua reaksi setengah di atas:

\mbox{6e}^{-}+\mbox{4H}_{2}\mbox{O}+\mbox{2MnO}_{4}^{-}\rightarrow\mbox{2MnO}_{2}+\mbox{8OH}^{-}\,
\mbox{6OH}^{-}+\mbox{3SO}^{2-}_{3}\rightarrow\mbox{3SO}^{2-}_{4}+\mbox{3H}_{2}\mbox{O}+\mbox{6e}^{-}\,

Persamaan diseimbangkan:

\mbox{2KMnO}_{4}+\mbox{3Na}_{2}\mbox{SO}_3+\mbox{H}_2\mbox{O}\rightarrow\mbox{2MnO}_{2}+\mbox{3Na}_{2}\mbox{SO}_{4}+\mbox{2KOH}\,

Lihat pula

Referensi

  1. ^ Hudlický, Miloš (6 April 1996). Reductions in Organic Chemistry. Washington, D.C.: American Chemical Society. hlm. 429. ISBN 0-8412-3344-6.
  2. ^ Hudlický, Miloš (6 April 1990). Oxidations in Organic Chemistry. Washington, D.C.: American Chemical Society. hlm. 456. ISBN 0-8412-1780-7.
  3. ^ “gutier.doc”. Diakses pada 30 Juni 2008.

Larutan Elektrolit dan Non Elektrolit

Standard

1. LARUTAN

Larutan adalah campuran yang bersifat homogen atau sama. Jika anda melarutkan 2 sendok makan gula putih (pasir) ke dalam segelas air, maka Anda telah mendapatkan larutan gula. Terdapat 2 larutan yaitu; larutan Elektrolit dan Larutan Non-Elektrolit.

1.1 Larutan Elektrolit
Larutan elektrolit merupakan larutan yang dibentuk dari zat elektrolit. Sedangkan zat elektrolit itu sendiri merupakan zat-zat yang di dalam air terurai membentuk ion-ionnya. Zat elektrolit yang terurai sempurna di dalam air disebut Elektrolit Kuat dan larutan yang dibentuknya disebut Larutan Elektrolit Kuat. Zat elektrolit yang hanya terurai sebagian membentuk ion-ionnya di dalam air disebut Elektrolit Lemah dan larutan yang dibentuknya disebut Larutan Elektrolit Lemah.
1.2 Larutan Non-Elektrolit
Larutan non elektrolit merupakan larutan yang dibentuk dari zat non elektrolit. Sedangkan zat non elektrolit itu sendiri merupakan zat-zat yang di dalam air tidak terurai dalam bentuk ion-ionnya, tetapi terurai dalam bentuk molekuler.
1.3 Membedakan Larutan Elektrolit dan Larutan Non Elektrolit
Larutan elektolit dan non elektrolit dapat dibedakan dengan jelas dari sifatnya yaitu penghantaran Listrik.
a). Larutan elektrolit dapat menghantarkan listrik.
Hal ini untuk pertama kalinya diterangkan oleh Svante August Arrhenius(1859-1927), seorang ilmuwan dari Swedia. Arrhenius menemukan bahwa zat elektrolit dalam air akan terurai menjadi partikel-partikel berupa atom atau gugus atom yang bermuatan listrik. Karena secara total larutan tidak bermuatan, maka jumlah muatan positif dalam larutan harus sama dengan muatan negatif.
Atom atau gugus atom yang bermuatan listrik itu dinamai ion. Ion yang bemuatan positif disebut kation, sedangkan ion yang bermuatan negatif disebut anion. Pembuktian sifat larutan elektrolit yang dapat menghantarkan listrik ini dapat diperlihatkan melalui eksperimen. Zat-zat yang tergolong elektrolit yaitu asam, basa, dan garam.
Contoh larutan elektrolit kuat : HCl, HBr, HI, HNO3, dan lain-lain
Contoh larutan elektrolit lemah :CH3COOH, Al(OH)3 dan Na2CO3
b). Larutan non elektrolit tidak dapat menghantarkan listrik.
Adapun larutan non elektrolit terdiri atas zat-zat non elektrolit yang tidak dilarutkan ke dalam air tidak terurai menjadi ion ( tidak terionisasi ). Dalam larutan, mereka tetap berupa molekul yang tidak bermuatan listrik. Itulah sebabnya larutan non elektrolit tidak dapat menghantarkan listrik. Pembuktian sifat larutan non elektrolit yang tidak dapat menghantarkan listrik ini dapat diperlihatkan melalui eksperimen.
Contoh larutan non elektrolit : Larutan Gula (C12H22O11), Etanol (C2H5OH), Urea (CO(NH)2), Glukosa (C6H12O6), dan lain-lain

1.4 Kekuatan Elektrolit
Kekuatan suatu elektrolit ditandai dengan suatu besaran yang disebut derajat ionisasi (α)

Keterangan :
Elektrolit kuat memiliki harga α = 1, sebab semua zat yang dilarutkan terurai menjadi ion.
Elektrolit lemah memiliki harga α<1, sebab hanya sebagian yang terurai menjadi ion.
Adapun non elektrolit memiliki harga α = 0, sebab tidak ada yang terurai menjadi ion.

Elektrolit kuat : α = 1(terionisasi sempurna)
Elektrolit lemah : 0 < α < 1 (terionisasi sebagian)
Non Elektrolit : α = 0 (tidak terionisasi)

1.5 Reaksi Ionisasi Elektrolit Kuat

Larutan yang dapat memberikan lampu terang, gelembung gasnya banyak, maka laurtan ini merupakan elektrolit kuat. Umumnya elektrolit kuat adalah larutan garam. Dalam proses ionisasinya, elektrolit kuat menghasilkan banyak ion maka  = 1 (terurai senyawa), pada persamaan reaksi ionisasi elektrolit kuat ditandai dengan anak panah satu arah ke kanan.

Perlu diketahui pula elektrolit kuat ada beberapa dari asam dan basa.
Contoh :
NaCl (aq)

KI (aq)

Ca(NO3)2(g) Na+(aq) + Cl-(aq)

K+(aq) + I-(aq)

Ca2+(aq) + NO3-(aq)

Di bawah ini diberikan kation dan anion yang dapat membentuk elektrolit kuat.
Kation : Na+, L+, K+, Mg2+, Ca2+, Sr2+, Ba2+, NH4+
Anion : Cl-, Br-, I-, SO42-, NO3-, ClO4-, HSO4-, CO32-, HCO32-

Cobalah Anda buatkan 5 macam garam lengkap dengan reaksi ionisasinya sesuai dengan kation dan anion pembentuknya seperti di bawah ini.
No. Kation dan Anion Rumus Senyawa Reaksi Kimia
1.
2.
3.
4.
5.
Mg2+Br-
Na+SO42-
Ca2+ClO4-
Ba2+NO32-
NH4+Cl-

Jawaban :
Mg2+
Br-
MgBr2
Mg2+ + 2Br-
Na+
SO42-
Na2SO4
2Na+ + SO42-
Ca2+
ClO4-
Ca(ClO4)4
Ca2+ + 2ClO4-
Ba2+
NO32-
Ba(NO3)2
Ba2+ + 2NO3-
NH4+
Cl-
NH4Cl
NH4+ + Cl-

1.6 Reaksi Ionisasi Elektrolit Lemah

Larutan yang dapat memberikan nyala redup ataupun tidak menyala, tetapi masih terdapat gelembung gas pada elektrodanya maka larutan ini merupakan elekrtolit lemah. Daya hantarnya buruh dan memiliki á (derajat ionisasi) kecil, karena sedikit larutan yang terurai (terionisasi). Makin sedikit yang terionisasi, makin lemah elektrolit tersebut. Dalam persamaan reaksi ionisasi elektrolit lemah ditandai dengan panah dua arah (bolak-balik) artinya tidak semua molekul terurai (ionisasi tidak sempurna)
Contoh:
CH3COOH(aq)

NH4OH(g) CH3COO-(aq) + H+(aq)

NH4+(aq) + OH-(aq)

Di bawah ini diberikan beberapa larutaan elektrolit lemah, tuliskanlah reaksi ionisasinya.
a. H2S(aq)
b. H3PO4 (aq)
c. HF(g) d. HCOOH(aq)
e. HCN(aq)
Jawaban :
a. H2S(aq)

b. H3PO4 (aq)

c. HF(g)

d. HCOOH(aq)

e. HCN(aq) 2H+(aq) + S2-(aq)

3H+(aq) + PO43-(aq)

H+(aq) + F-(aq)

H+(aq) + HCOO+(aq)

H+(aq) + CN-(aq)

2. Cara Larutan Elektrolit Menghantarkan Arus Listrik

Pada tahun 1884, Svante Arrhenius, ahli kimia terkenal dari Swedia mengemukakan teori elektrolit yang sampai saat ini teori tersebut tetap bertahan padahal ia hampir saja tidak diberikan gelar doktornya di Universitas Upsala, Swedia, karena mengungkapkan teori ini. Menurut Arrhenius, larutan elektrolit dalam air terdisosiasi ke dalam partikel-partikel bermuatan listrik positif dan negatif yang disebut ion (ion positif dan ion negatif) Jumlah muatan ion positif akan sama dengan jumlah muatan ion negatif, sehingga muatan ion-ion dalam larutan netral. Ion-ion inilah yang bertugas mengahantarkan arus listrik.

” Larutan elektrolit dapat menghantarkan listrik karena mengandung ion-ion yang dapat bergerak bebas. Ion-ion itulah yang menghantarkan arus listrik melalui larutan”.
Larutan yang dapat menghantarkan arus listrik disebut larutan elektrolit.
Larutan ini memberikan gejala berupa menyalanya lampu atau timbulnya gelembung gas dalam larutan.
Larutan elektrolit mengandung partikel-partikel yang bermuatan (kation dan anion). Berdasarkan percobaan yang dilakukan oleh Michael Faraday, diketahui bahwa jika arus listrik dialirkan ke dalam larutan elektrolit akan terjadi proses elektrolisis yang menghasilkan gas. Gelembung gas ini terbentuk karena ion positif mengalami reaksi reduksi dan ion negatif mengalami oksidasi. Contoh, pada laruutan HCl terjadi reaksi elektrolisis yang menghasilkan gas hidrogen sebagai berikut.

HCl(aq)→ H+(aq) + Cl-(aq)
Reaksi reduksi : 2H+(aq) + 2e- → H2(g)
Reaksi oksidasi : 2Cl-(aq) → Cl2(g) + 2e-
Larutan elektrolit terdiri dari larutan elektrolit kuat contohnya HCl, H2SO4, dan larutan elektrolit lemah contohnya CH3COOH, NH3, H2S.
Larutan elektrolit dapat bersumber dari senyawa ion (senyawa yang mempunyai ikatan ion) atau senyawa kovalen polar (senyawa yang mempunyai ikatan kovalen polar)

Zat elektrolit yang terurai dalam air menjadi ion-ion :
HaCl (s) Na+ (aq) + Cl- (aq)
HCl (g) H+ (aq) + Cl- (aq)
H2SO4 (aq) 2H+ (aq) + SO4 2- (aq)
HaOH (s) Na+ (aq) + OH- (aq)
CH3COOH (l) CH3COO- (aq) + H+ (aq)
Zat non elektrolit yang tidak terurai menjadi ion-ion, tapi tetap berupa molekul
C2H5OH (l) C2H5OH (aq)
CO(NH2)2 (s) CO(NH2)2 (aq)
Reaksi peruraian disebut elektrolisis
Reaksi reduksi : pada katode, electron ditangkap oleh ion
Reaksi oksidasi : pada anode, ion akan melepaskan electron
Berdasarkan pelepasan dan pengikatan oksigen
Reaksi oksidasi : reaksi pengikatan oksigen
Contoh : C6H1206 CO2 + 6H2O
3S + 2KClO3 2KCl + 3SO2
Reaksi Reduksi :Reaksi pelepasan oksigen
Contoh : Fe2O3 + 3CO 2Fe2 + 3CO2
CuO + H2 Cu + H2O

3. Hubungan Keelektrolitan dengan ikatan kimia
3.1 Senyawa Ion

Sebagai contoh dari kegiatan percobaan yang tergolong larutan elektrolit yang berikatan ion adalah garam dapur.

Dapatkah Anda membedakan daya hantar listrik untuk garam pada saat kristal, lelehan dan larutan?

Cobalah perhatikan uraian berikut.
NaCl adalah senyawa ion, jika dalam keadaan kristal sudah sebagai ion-ion, tetapi ion-ion itu terikat satu sama lain dengan rapat dan kuat, sehingga tidak bebas bergerak. Jadi dalam keadaan kristal (padatan) senyawa ion tidak dapat menghantarkan listrik, tetapi jika garam yang berikatan ion tersebut dalam keadaan lelehan atau larutan, maka ion-ionnya akan bergerak bebas, sehingga dapat menghantarkan listrik.

Pada saat senyawa NaCl dilarutkan dalam air, ion-ion yang tersusun rapat dan terikat akan tertarik oleh molekul-molekul air dan air akan menyusup di sela-sela butir-butir ion tersebut (proses hidasi) yang akhirnya akan terlepas satu sama lain dan bergerak bebas dalam larutan.
Yang termasuk ke dalam senyawa ion adalah senyawa basa dan garam.
NaCl (s) + air Na+ (aq) + Cl-(aq)

Gambar 5. Proses pelarutan padatan kristal

3.2 Senyawa Kovalen

Senyawa kovalen terbagi menjadi senyawa kovalen non polar misalnya : F2, Cl2, Br2, I2, CH4 dan kovalen polar misalnya : HCl, HBr, HI, NH3.
Dari hasil percobaan, hanya senyawa yang berikatan kovalen polarlah yang dapat menghantarkan arus listrik. Bagaimanakah hal ini dapat dijelaskan?

Kalau kita perhatikan, bahwa HCl merupakan senyawa kovalen di atom bersifat polar, pasangan elektron ikatan tertarik ke atom Cl yang lebih elektro negatif dibanding dengan atom H. Sehingga pada HCl, atom H lebih positif dan atom Cl lebih negatif.

Struktur lewis:

Reaksi ionisasi nya adalah sebagai berikut : HCL(aq) H+(aq) + Cl-(aq)
Jadi walaupun molekul HCl bukan senyawa ion, jika dilarutkan ke dalam air maka larutannya dapat menghantarkan arus listrik karena menghasilkan ion-ion yang bergerak bebas.
HCl(g) + H2O(l)

HCl(g)

HCl(g) H3O+(aq) + Cl-(aq)

H3O+ + Cl-(g)

H+(aq) + Cl-(aq)

Apakah HCl dalam keadaan murni dapat menghantarkan arus listrik? Karena HCl dalam keadaan murni berupa molekul-molekul tidak mengandung ion-ion, maka cairan HCl murni tidak dapat menghantarkan arus listrik.

4. Kesimpulan
Dari penjelasan di atas maka dapat disimpulkan bahwa suatu larutan akan dapat menghantarkan listrik apabila lrutan tersebut memiliki ion-ion yang bergerak bebas, tapi apabila ion-ion berbentuk rapat dan kuat, sehingga tidak dapat bergerak bebas maka larutan tersebut tidak dapat menghantarkan listrik.

kimx07_4

Hidrokarbon

Standard

Dalam bidang kimia, hidrokarbon adalah sebuah senyawa yang terdiri dari unsur atom karbon (C) dan atom hidrogen (H). Seluruh hidrokarbon memiliki rantai karbon dan atom-atom hidrogen yang berikatan dengan rantai tersebut. Istilah tersebut digunakan juga sebagai pengertian dari hidrokarbon alifatik.

Sebagai contoh, metana (gas rawa) adalah hidrokarbon dengan satu atom karbon dan empat atom hidrogen: CH4. Etana adalah hidrokarbon (lebih terperinci, sebuah alkana) yang terdiri dari dua atom karbon bersatu dengan sebuah ikatan tunggal, masing-masing mengikat tiga atom karbon: C2H6. Propana memiliki tiga atom C (C3H8) dan seterusnya (CnH2·n+2).

Daftar isi

Tipe-tipe hidrokarbon

Klasifikasi hidrokarbon yang dikelompokkan oleh tatanama organik adalah:

  1. Hidrokarbon jenuh/tersaturasi (alkana) adalah hidrokarbon yang paling sederhana. Hidrokarbon ini seluruhnya terdiri dari ikatan tunggal dan terikat dengan hidrogen. Rumus umum untuk hidrokarbon tersaturasi adalah CnH2n+2.[1] Hidrokarbon jenuh merupakan komposisi utama pada bahan bakar fosil dan ditemukan dalam bentuk rantai lurus maupun bercabang. Hidrokarbon dengan rumus molekul sama tapi rumus strukturnya berbeda dinamakan isomer struktur.[2]
  2. Hidrokarbon tak jenuh/tak tersaturasi adalah hidrokarbon yang memiliki satu atau lebih ikatan rangkap, baik rangkap dua maupun rangkap tiga. Hidrokarbon yang mempunyai ikatan rangkap dua disebut dengan alkena, dengan rumus umum CnH2n.[3] Hidrokarbon yang mempunyai ikatan rangkap tiga disebut alkuna, dengan rumus umum CnH2n-2.[4]
  3. Sikloalkana adalah hidrokarbon yang mengandung satu atau lebih cincin karbon. Rumus umum untuk hidrokarbon jenuh dengan 1 cincin adalah CnH2n.[2]
  4. Hidrokarbon aromatik, juga dikenal dengan arena, adalah hidrokarbon yang paling tidak mempunyai satu cincin aromatik.

Hidrokarbon dapat berbentuk gas (contohnya metana dan propana), cairan (contohnya heksana dan benzena), lilin atau padatan dengan titik didih rendah (contohnya paraffin wax dan naftalena) atau polimer (contohnya polietilena, polipropilena dan polistirena).

Ciri-ciri umum

Karena struktur molekulnya berbeda, maka rumus empiris antara hidrokarbon pun juga berbeda: jumlah hidrokarbon yang diikat pada alkena dan alkuna pasti lebih sedikit karena atom karbonnya berikatan rangkap.

Kemampuan hidrokarbon untuk berikatan dengan dirinya sendiri disebut dengan katenasi, dan menyebabkan hidrokarbon bisa membentuk senyawa-senyawa yang lebih kompleks, seperti sikloheksana atau arena seperti benzena. Kemampuan ini didapat karena karakteristik ikatan diantara atom karbon bersifat non-polar.

Sesuai dengan teori ikatan valensi, atom karbon harus memenuhi aturan “4-hidrogen” yang menyatakan jumlah atom maksimum yang dapat berikatan dengan karbon, karena karbon mempunyai 4 elektron valensi. Dilihat dari elektron valensi ini, maka karbon mempunyai 4 elektron yang bisa membentuk ikatan kovalen atau ikatan dativ.

Hidrokarbon bersifat hidrofobik dan termasuk dalam lipid.

Beberapa hidrokarbon tersedia melimpah di tata surya. Danau berisi metana dan etana cair telah ditemukan pada Titan, satelit alam terbesar Saturnus, seperti dinyatakan oleh Misi Cassini-Huygens.[5]

Hidrokarbon sederhana dan variasinya

Jumlah atom
karbon
Alkana(1 ikatan) Alkena(2 ikatan) Alkuna (3 ikatan) Sikloalkana Alkadiena
1 Metana Metena Metuna
2 Etana Etena (etilena) Etuna (asetilena)
3 Propana Propena (propilena) Propuna (metilasetilena) Siklopropana Propadiena (alena)
4 Butana Butena (butilena) Butuna Siklobutana Butadiena
5 Pentana Pentena Pentuna Siklopentana Pentadiena (piperylene)
6 Heksana Heksena Heksuna Sikloheksana Heksadiena
7 Heptana Heptena Heptuna Sikloheptana Heptadiena
8 Oktana Oktena Oktuna Siklooktana Oktadiena
9 Nonana Nonena Nonuna Siklononana Nonadiena
10 Dekana Dekena Dekuna Siklodekana Dekadiena

Penggunaan

Hidrokarbon adalah salah satu sumber energi paling penting di bumi. Penggunaan yang utama adalah sebagai sumber bahan bakar. Dalam bentuk padat, hidrokarbon adalah salah satu komposisi pembentuk aspal.[6]

Hidrokarbon dulu juga pernah digunakan untuk pembuatan klorofluorokarbon, zat yang digunakan sebagai propelan pada semprotan nyamuk. Saat ini klorofluorokarbon tidak lagi digunakan karena memiliki efek buruk terhadap lapisan ozon.

Metana dan etana berbentuk gas dalam suhu ruangan dan tidak mudah dicairkan dengan tekanan begitu saja. Propana lebih mudah untuk dicairkan, dan biasanya dijual di tabung-tabung dalam bentuk cair. Butana sangat mudah dicairkan, sehingga lebih aman dan sering digunakan untuk pemantik rokok. Pentana berbentuk cairan bening pada suhu ruangan, biasanya digunakan di industri sebagai pelarut wax dan gemuk. Heksana biasanya juga digunakan sebagai pelarut kimia dan termasuk dalam komposisi bensin.

Heksana, heptana, oktana, nonana, dekana, termasuk dengan alkena dan beberapa sikloalkana merupakan komponen penting pada bensin, nafta, bahan bakar jet, dan pelarut industri. Dengan bertambahnya atom karbon, maka hidrokarbon yang berbentuk linear akan memiliki sifat viskositas dan titik didih lebih tinggi, dengan warna lebih gelap.

Pembakaran hidrokarbon

!Artikel utama untuk bagian ini adalah: Pembakaran

Saat ini, hidrokarbon merupakan sumber energi listrik dan panas utama dunia karena energi yang dihasilkannya ketika dibakar.[7] Energi hidrokarbon ini biasanya sering langsung digunakan sebagai pemanas di rumah-rumah, dalam bentuk minyak maupun gas alam. Hidrokarbon dibakar dan panasnya digunakan untuk menguapkan air, yang nanti uapnya disebarkan ke seluruh ruangan. Prinsip yang hampir sama digunakan di pembangkit-pembangkit listrik.

Ciri-ciri umum dari hidrokarbon adalah menghasilkan uap, karbon dioksida, dan panas selama pembakaran, dan oksigen diperlukan agar reaksi pembakaran dapat berlangsung. Berikut ini adalah contoh reaksi pembakaran metana:

CH4 + 2 O2 → 2 H2O + CO2 + Energi

Jika udara miskin gas oksigen, maka akan terbentuk gas karbon monoksida (CO) dan air:

2 CH4 + 3 O2 → 2CO + 4H2O

Contoh lainnya, reaksi pembakaran propana:

C3H8 + 5 O2 → 4 H2O + 3 CO2 + Energi
CnH2n+2 + (3n+1)/2 O2 → (n+1) H2O + n CO2 + Energi

Reaksi pembakaran hidrokarbon termasuk reaksi kimia eksotermik.

 

Referensi

  1. ^ Silderberg, 623
  2. ^ a b Silderberg, 625
  3. ^ Silderberg, 628
  4. ^ Silderberg, 631
  5. ^ ‘Proof’ of methane lakes on Titan, BBC News, 4 January 2007
  6. ^ Dan Morgan, Lecture ENVIRO 100, University of Washington, 11/5/08
  7. ^ World Coal, Coal and Electricity, http://www.worldcoal.org/coal/uses-of-coal/coal-electricity/, retrieved 07/03/2012

Ikatan Kimia

Standard

Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Penjelasan mengenai gaya tarik menarik ini sangatlah rumit dan dijelaskan oleh elektrodinamika kuantum. Dalam prakteknya, para kimiawan biasanya bergantung pada teori kuantum atau penjelasan kualitatif yang kurang kaku (namun lebih mudah untuk dijelaskan) dalam menjelaskan ikatan kimia. Secara umum, ikatan kimia yang kuat diasosiasikan dengan transfer elektron antara dua atom yang berpartisipasi. Ikatan kimia menjaga molekul-molekul, kristal, dan gas-gas diatomik untuk tetap bersama. Selain itu ikatan kimia juga menentukan struktur suatu zat.

Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan “kuat”, sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan “lemah”. Hal yang perlu diperhatikan adalah bahwa ikatan “lemah” yang paling kuat dapat lebih kuat daripada ikatan “kuat” yang paling lemah.

Contoh model titik Lewis yang menggambarkan ikatan kimia anatara karbon C, hidrogen H, dan oksigen O. Penggambaran titik lewis adalah salah satu dari usaha awal kimiawan dalam menjelaskan ikatan kimia dan masih digunakan secara luas sampai sekarang.

Daftar isi

Tinjauan

Elektron yang mengelilingi inti atom bermuatan negatif dan proton yang terdapat dalam inti atom bermuatan positif, mengingat muatan yang berlawanan akan saling tarik menarik, maka dua atom yang berdekatan satu sama lainnya akan membentuk ikatan.

Dalam gambaran yang paling sederhana dari ikatan non-polar atau ikatan kovalen, satu atau lebih elektron, biasanya berpasangan, ditarik menuju sebuah wilayah di antara dua inti atom. Gaya ini dapat mengatasi gaya tolak menolak antara dua inti atom yang positif, sehingga atraksi ini menjaga kedua atom untuk tetap bersama, walaupun keduanya masih akan tetap bergetar dalam keadaan kesetimbangan. Ringkasnya, ikatan kovalen melibatkan elektron-elektron yang dikongsi dan dua atau lebih inti atom yang bermuatan positif secara bersamaan menarik elektron-elektron bermuatan negatif yang dikongsi.

Dalam gambaran ikatan ion yang disederhanakan, inti atom yang bermuatan positif secara dominan melebihi muatan positif inti atom lainnya, sehingga secara efektif menyebabkan satu atom mentransfer elektronnya ke atom yang lain. Hal ini menyebabkan satu atom bermuatan positif dan yang lainnya bermuatan negatif secara keseluruhan. Ikatan ini dihasilkan dari atraksi elektrostatik di antara atom-atom dan atom-atom tersebut menjadi ion-ion yang bermuatan.

Semua bentuk ikatan dapat dijelaskan dengan teori kuantum, namun dalam prakteknya, kaidah-kaidah yang disederhanakan mengijinkan para kimiawan untuk memprediksikan kekuatan, arah, dan polaritas sebuah ikatan. Kaidah oktet (Bahasa Inggris: octet rule) dan teori VSEPR adalah dua contoh kaidah yang disederhanakan tersebut. Ada pula teori-teori yang lebih canggih, yaitu teori ikatan valens yang meliputi hibridisasi orbital dan resonans, dan metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: Linear combination of atomic orbitals molecular orbital method) yang meliputi teori medan ligan. Elektrostatika digunakan untuk menjelaskan polaritas ikatan dan efek-efeknya terhadap zat-zat kimia.

Sejarah

!Artikel utama untuk bagian ini adalah: Sejarah kimia dan Sejarah molekul

Spekulasi awal dari sifat-sifat ikatan kimia yang berawal dari abad ke-12 mengganggap spesi kimia tertentu disatukan oleh sejenis afinitas kimia. Pada tahun 1704, Isaac Newton menggarisbesarkan teori ikatan atomnya pada “Query 31” buku Opticksnya dengan mengatakan atom-atom disatukan satu sama lain oleh “gaya” tertentu.

Pada tahun 1819, setelah penemuan tumpukan volta, Jöns Jakob Berzelius mengembangkan sebuah teori kombinasi kimia yang menekankan sifat-sifat elektrogenativitas dan elektropositif dari atom-atom yang bergabung. Pada pertengahan abad ke-19 Edward Frankland, F.A. Kekule, A.S. Couper, A.M. Butlerov, dan Hermann Kolbe, beranjak pada teori radikal, mengembangkan teori valensi yang pada awalnya disebut “kekuatan penggabung”. Teori ini mengatakan sebuah senyawa tergabung berdasarkan atraksi kutub positif dan kutub negatif. Pada tahun 1916, kimiawan Gilbert N. Lewis mengembangkan konsep ikatan elektron berpasangan. Konsep ini mengatakan dua atom dapat berkongsi satu sampai enam elektron, membentuk ikatan elektron tunggal, ikatan tunggal, ikatan rangkap dua, atau ikatan rangkap tiga.

Lewis-bond.jpg

Dalam kata-kata Lewis sendiri:

An electron may form a part of the shell of two different atoms and cannot be said to belong to either one exclusively.

Pada tahun yang sama, Walther Kossel juga mengajukan sebuah teori yang mirip dengan teori Lewis, namun model teorinya mengasumsikan transfer elektron yang penuh antara atom-atom. Teori ini merupakan model ikatan polar. Baik Lewis dan Kossel membangun model ikatan mereka berdasarkan kaidah Abegg (1904).

Pada tahun 1927, untuk pertama kalinya penjelasan matematika kuantum yang penuh atas ikatan kimia yang sederhana berhasil diturunkan oleh fisikawan Denmark Oyvind Burrau.[1] Hasil kerja ini menunjukkan bahwa pendekatan kuantum terhadap ikatan kimia dapat secara mendasar dan kuantitatif tepat. Namun metode ini tidak mampu dikembangkan lebih jauh untuk menjelaskan molekul yang memiliki lebih dari satu elektron. Pendekatan yang lebih praktis namun kurang kuantitatif dikembangkan pada tahun yang sama oleh Walter Heitler and Fritz London. Metode Heitler-London menjadi dasar dari teori ikatan valensi. Pada tahun 1929, metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: linear combination of atomic orbitals molecular orbital method), disingkat LCAO, diperkenalkan oleh Sir John Lennard-Jones yang bertujuan menurunkan struktur elektronik dari molekul F2 (fluorin) dan O2 (oksigen) berdasarkan prinsip-prinsip dasar kuantum. Teori orbital molekul ini mewakilkan ikatan kovalen sebagai orbital yang dibentuk oleh orbital-orbital atom mekanika kuantum Schrödinger yang telah dihipotesiskan untuk atom berelektron tunggal. Persamaan ikatan elektron pada multielektron tidak dapat diselesaikan secara analitik, namun dapat dilakukan pendekatan yang memberikan hasil dan prediksi yang secara kualitatif cukup baik. Kebanyakan perhitungan kuantitatif pada kimia kuantum modern menggunakan baik teori ikatan valensi maupun teori orbital molekul sebagai titik awal, walaupun pendekatan ketiga, teori fungsional rapatan (Bahasa Inggris: density functional theory), mulai mendapatkan perhatian yang lebih akhir-akhir ini.

Pada tahun 1935, H. H. James dan A. S. Coolidge melakukan perhitungan pada molekul dihidrogen.Berbeda dengan perhitungan-perhitungan sebelumnya yang hanya menggunakan fungsi-fungsi jarak antara elektron dengan inti atom, mereka juga menggunakan fungsi yang secara eksplisit memperhitungkan jarak antara dua elektron.[2] Dengan 13 parameter yang dapat diatur, mereka mendapatkan hasil yang sangat mendekati hasil yang didapatkan secara eksperimen dalam hal energi disosiasi. Perluasan selanjutnya menggunakan 54 parameter dan memberikan hasil yang sangat sesuai denganhasil eksperimen. Perhitungan ini meyakinkan komunitas sains bahwa teori kuantum dapat memberikan hasil yang sesuai dengan hasil eksperimen. Namun pendekatan ini tidak dapat memberikan gambaran fisik seperti yang terdapat pada teori ikatan valensi dan teori orbital molekul. Selain itu, ia juga sangat sulit diperluas untuk perhitungan molekul-molekul yang lebih besar.

Teori ikatan valensi

!Artikel utama untuk bagian ini adalah: Teori ikatan valensi

Pada tahun 1927, teori ikatan valensi dikembangkan atas dasar argumen bahwa sebuah ikatan kimia terbentuk ketika dua valensi elektron bekerja dan menjaga dua inti atom bersama oleh karena efek penurunan energi sistem. Pada tahun 1931, beranjak dari teori ini, kimawan Linus Pauling mempublikasikan jurnal ilmiah yang dianggap sebagai jurnal paling penting dalam sejarah kimia: “On the Nature of the Chemical Bond”. Dalam jurnal ini, berdasarkan hasil kerja Lewis dan teori valensi ikatan Heitler dan London, dia mewakilkan enam aturan pada ikatan elektron berpasangan:

1. Ikatan elektron berpasangan terbentuk melalui interaksi elektron tak-berpasangan pada masing-masing atom.
2. Spin-spin elektron haruslah saling berlawanan.
3. Seketika dipasangkan, dua elektron tidak bisa berpartisipasi lagi pada ikatan lainnya.
4. Pertukaran elektron pada ikatan hanya melibatkan satu persamaan gelombang untuk setiap atom.
5. Elektron-elektron yang tersedia pada aras energi yang paling rendah akan membentuk ikatan-ikatan yang paling kuat.
6. Dari dua orbital pada sebuah atom, salah satu yang dapat bertumpang tindih paling banyaklah yang akan membentuk ikatan paling kuat, dan ikatan ini akan cenderung berada pada arah orbital yang terkonsentrasi.

Buku teks tahun 1939 Pauling: On the Nature of Chemical Bond menjadi apa yang banyak orang sebut sebagai “kitab suci” kimia modern. Buku ini membantu kimiawan eksperimental untuk memahami dampak teori kuantum pada kimia. Namun, edisi 1959 selanjutnya gagal untuk mengalamatkan masalah yang lebih mudah dimengerti menggunakan teori orbital molekul. Dampak dari teori valensi ini berkurang sekitar tahun 1960-an dan 1970-an ketika popularitas teori orbital molekul meningkat dan diimplementasikan pada beberapa progam komputer yang besar. Sejak tahun 1980-an, masalah implementasi teori ikatan valensi yang lebih sulit pada program-program komputer telah hampir dipecahkan dan teori ini beranjak bangkit kembali.

Teori orbital molekul

!Artikel utama untuk bagian ini adalah: Teori orbital molekul

Teori orbital molekul (Bahasa Inggris: Molecular orbital tehory), disingkat MO, menggunakan kombinasi linear orbital-orbital atom untuk membentuk orbital-orbital molekul yang menrangkumi seluruh molekul. Semuanya ini seringkali dibagi menjadi orbital ikat, orbital antiikat, dan orbital bukan-ikatan. Orbital molekul hanyalah sebuah orbital Schrödinger yang melibatkan beberapa inti atom. Jika orbital ini merupakan tipe orbital yang elektron-elektronnya memiliki kebolehjadian lebih tinggi berada di antara dua inti daripada di lokasi lainnya, maka orbital ini adalah orbital ikat dan akan cenderung menjaga kedua inti bersama. Jika elektron-elektron cenderung berada di orbital molekul yang berada di lokasi lainnya, maka orbital ini adalah orbital antiikat dan akan melemahkan ikatan. Elektron-elektron yang berada pada orbital bukan-ikatan cenderung berada pada orbital yang paling dalam (hampir sama dengan orbital atom), dan diasosiasikan secara keseluruhan pada satu inti. Elektron-elektron ini tidak menguatkan maupun melemahkan kekuatan ikatan.

Perbandingan antara teori ikatan valensi dan teori orbital molekul

Pada beberapa bidang, teori ikatan valensi lebih baik daripada teori orbital molekul. Ketika diaplikasikan pada molekul berelektron dua, H2, teori ikatan valensi, bahkan dengan pendekatan Heitler-London yang paling sederhana, memberikan pendekatan energi ikatan yang lebih dekat dan representasi yang lebih akurat pada tingkah laku elektron ketika ikatan kimia terbentuk dan terputus. Sebaliknya, teori orbital molekul memprediksikan bahwa molekul hidrogen akan berdisosiasi menjadi superposisi linear dari hidrogen atom dan ion hidrogen positif dan negatif. Prediksi ini tidak sesuai dengan gambaran fisik. Hal ini secara sebagian menjelaskan mengapa kurva energi total terhadap jarak antar atom pada metode ikatan valensi berada di atas kurva yang menggunakan metode orbital molekul. Situasi ini terjadi pada semua molekul diatomik homonuklir dan tampak dengan jelas pada F2 ketika energi minimum pada kurva yang menggunakan teori orbital molekul masih lebih tinggi dari energi dua atom F.

Konsep hibridisasi sangatlah berguna dan variabilitas pada ikatan di kebanyakan senyawa organik sangatlah rendah, menyebabkan teori ini masih menjadi bagian yang tak terpisahkan dari kimia organik. Namun, hasil kerja Friedrich Hund, Robert Mulliken, dan Gerhard Herzberg menunjukkan bahwa teori orbital molekul memberikan deskripsi yang lebih tepat pada spektrokopi, ionisasi, dan sifat-sifat magnetik molekul. Kekurangan teori ikatan valensi menjadi lebih jelas pada molekul yang berhipervalensi (contohnya PF5) ketika molekul ini dijelaskan tanpa menggunakan orbital-orbital d yang sangat krusial dalam hibridisasi ikatan yang diajukan oleh Pauling. Logam kompleks dan senyawa yang kurang elektron (seperti diborana) dijelaskan dengan sangat baik oleh teori orbital molekul, walaupun penjelasan yang menggunakan teori ikatan valensi juga telah dibuat.

Pada tahun 1930, dua metode ini saling bersaing sampai disadari bahwa keduanya hanyalah merupakan pendekatan pada teori yang lebih baik. Jika kita mengambil struktur ikatan valensi yang sederhana dan menggabungkan semua struktur kovalen dan ion yang dimungkinkan pada sekelompok orbital atom, kita mendapatkan apa yang disebut sebagai fungsi gelombang interaksi konfigurasi penuh. Jika kita mengambil deskripsi orbital molekul sederhana pada keadaan dasar dan mengkombinasikan fungsi tersebut dengan fungsi-fungsi yang mendeskripsikan keseluruhan kemungkinan keadaan tereksitasi yang menggunakan orbital tak terisi dari sekelompok orbital atom yang sama, kita juga mendapatkan fungsi gelombang interaksi konfigurasi penuh. Terlihatlah bahwa pendekatan orbital molekul yang sederhana terlalu menitikberatkan pada struktur ion, sedangkan pendekatan teori valensi ikatan yang sederhana terlalu sedikit menitikberatkan pada struktur ion. Dapat kita katakan bahwa pendekatan orbital molekul terlalu ter-delokalisasi, sedangkan pendekatan ikatan valensi terlalu ter-lokalisasi.

Sekarang kedua pendekatan tersebut dianggap sebagai saling memenuhi, masing-masing memberikan pandangannya sendiri terhadap masalah-masalah pada ikatan kimia. Perhitungan modern pada kimia kuantum biasanya dimulai dari (namun pada akhirnya menjauh) pendekatan orbital molekul daripada pendekatan ikatan valensi. Ini bukanlah karena pendekatan orbital molekul lebih akurat dari pendekatan teori ikatan valensi, melainkan karena pendekatan orbital molekul lebih memudahkan untuk diubah menjadi perhitungan numeris. Namun program-progam ikatan valensi yang lebih baik juga tersedia.

Ikatan dalam rumus kimia

Bentuk atom-atom dan molekul-molekul yang 3 dimensi sangatlah menyulitkan dalam menggunakan teknik tunggal yang mengindikasikan orbital-orbital dan ikatan-ikatan. Pada rumus molekul, ikatan kimia (orbital yang berikatan) diindikasikan menggunakan beberapa metode yang bebeda tergantung pada tipe diskusi. Kadang-kadang kesemuaannya dihiraukan. Sebagai contoh, pada kimia organik, kimiawan biasanya hanya peduli pada gugus fungsi molekul. Oleh karena itu, rumus molekul etanol dapat ditulis secara konformasi, 3-dimensi, 2-dimensi penuh (tanpa indikasi arah ikatan 3-dimensi), 2-dimensi yang disingkat (CH3–CH2–OH), memisahkan gugus fungsi dari bagian molekul lainnnya (C2H5OH), atau hanya dengan konstituen atomnya saja (C2H6O). Kadangkala, bahkan kelopak valensi elektron non-ikatan (dengan pendekatan arah yang digambarkan secara 2-dimensi) juga ditandai. Beberapa kimiawan juga menandai orbital-orbital atom, sebagai contoh anion etena−4 yang dihipotesiskan (\/C=C/\ −4) mengindikasikan kemungkinan pembentukan ikatan.sehingga terjadi ikatan rangkap dua antara banci2 dgn germo.wkwkwk iya kan gan…

Ikatan kuat kimia

Panjang ikat dalam pm
dan energi ikat dalam kJ/mol.

Panjang ikat dapat dikonversikan menjadi Å
dengan pembagian dengan 100 (1 Å = 100 pm).
Data diambil dari [1].
Ikatan Panjang
(pm)
Energi
(kJ/mol)
H — Hidrogen
H–H 74 436
H–C 109 413
H–N 101 391
H–O 96 366
H–F 92 568
H–Cl 127 432
H–Br 141 366
C — Karbon
C–H 109 413
C–C 154 348
C=C 134 614
C≡C 120 839
C–N 147 308
C–O 143 360
C–F 135 488
C–Cl 177 330
C–Br 194 288
C–I 214 216
C–S 182 272
N — Nitrogen
N–H 101 391
N–C 147 308
N–N 145 170
N≡N 110 945
O — Oksigen
O–H 96 366
O–C 143 360
O–O 148 145
O=O 121 498
F, Cl, Br, I — Halogen
F–H 92 568
F–F 142 158
F–C 135 488
Cl–H 127 432
Cl–C 177 330
Cl–Cl 199 243
Br–H 141 366
Br–C 194 288
Br–Br 228 193
I–H 161 298
I–C 214 216
I–I 267 151
S — Belerang
C–S 182 272

Ikatan-ikatan berikut adalah ikatan intramolekul yang mengikat atom-atom bersama menjadi molekul. Dalam pandangan yang sederhana dan terlokalisasikan, jumlah elektron yang berpartisipasi dalam suatu ikatan biasanya merupakan perkalian dari dua, empat, atau enam. Jumlah yang berangka genap umumnya dijumpai karena elektron akan memiliki keadaan energi yang lebih rendah jika berpasangan. Teori-teori ikatan yang lebih canggih menunjukkan bahwa kekuatan ikatan tidaklah selalu berupa angka bulat dan tergantung pada distribusi elektron pada setiap atom yang terlibat dalam sebuah ikatan. Sebagai contohnya, karbon-karbon dalam senyawa benzena dihubungkan satu sama lain oleh ikatan 1.5 dan dua atom dalam nitrogen monoksida NO dihubungkan oleh ikatan 2,5. Keberadaan ikatan rangkap empat juga diketahui dengan baik. Jenis-jenis ikatan kuat bergantung pada perbedaan elektronegativitas dan distribusi orbital elektron yang tertarik pada suatu atom yang terlibat dalam ikatan. Semakin besar perbedaan elektronegativitasnya, semakin besar elektron-elektron tersebut tertarik pada atom yang berikat dan semakin bersifat ion pula ikatan tersebut. Semakin kecil perbedaan elektronegativitasnya, semakin bersifat kovalen ikatan tersebut.

  1. REDIRECT Nama halaman tujuan

Ikatan kovalen

!Artikel utama untuk bagian ini adalah: Ikatan kovalen

Ikatan kovalen adalah ikatan yang umumnya sering dijumpai, yaitu ikatan yang perbedaan elektronegativitas (negatif dan positif) di antara atom-atom yang berikat sangatlah kecil atau hampir tidak ada. Ikatan-ikatan yang terdapat pada kebanyakan senyawa organik dapat dikatakan sebagai ikatan kovalen. Lihat pula ikatan sigma dan ikatan pi untuk penjelasan LCAO terhadap jenis ikatan ini.

Ikatan polar kovalen

!Artikel utama untuk bagian ini adalah: Ikatan polar kovalen

Ikatan polar kovalen merupakan ikatan yang sifat-sifatnya berada di antara ikatan kovalen dan ikatan ion.

Ikatan ion

!Artikel utama untuk bagian ini adalah: Ikatan ion

Ikatan ion merupakan sejenis interaksi elektrostatik antara dua atom yang memiliki perbedaan elektronegativitas yang besar. Tidaklah terdapat nilai-nilai yang pasti yang membedakan ikatan ion dan ikatan kovalen, namun perbedaan elektronegativitas yang lebih besar dari 2,0 bisanya disebut ikatan ion, sedangkan perbedaan yang lebih kecil dari 1,5 biasanya disebut ikatan kovalen.[3] Ikatan ion menghasilkan ion-ion positif dan negatif yang berpisah. Muatan-muatan ion ini umumnya berkisar antara -3 e sampai dengan +3e.

Ikatan kovalen koordinat

!Artikel utama untuk bagian ini adalah: Ikatan kovalen koordinat

Ikatan kovalen koordinat, kadangkala disebut sebagai ikatan datif, adalah sejenis ikatan kovalen yang keseluruhan elektron-elektron ikatannya hanya berasal dari salah satu atom, penderma pasangan elektron, ataupun basa Lewis. Konsep ini mulai ditinggalkan oleh para kimiawan seiring dengan berkembangnya teori orbital molekul. Contoh ikatan kovalen koordinat terjadi pada nitron dan ammonia borana. Susunan ikatan ini berbeda dengan ikatan ion pada perbedaan elektronegativitasnya yang kecil, sehingga menghasilkan ikatan yang kovalen. Ikatan ini biasanya ditandai dengan tanda panah. Ujung panah ini menunjuk pada akseptor elektron atau asam Lewis dan ekor panah menunjuk pada penderma elektron atau basa Lewis

Ikatan pisang

!Artikel utama untuk bagian ini adalah: Ikatan pisang

Ikatan pisang adalah sejenis ikatan yang terdapat pada molekul-molekul yang mengalami terikan ataupun yang mendapat rintangan sterik, sehingga orbital-orbital ikatan tersebut dipaksa membentuk struktur ikatan yang mirip dengan pisang. Ikatan pisang biasanya lebih rentan mengalami reaksi daripada ikatan-ikatan normal lainnya.

Ikatan 3c-2e dan 3c-4e

Dalam ikatan tiga-pusat dua-elektron, tiga atom saling berbagi dua elektron. Ikatan sejenis ini terjadi pada senyawa yang kekurangan elektron seperti pada diborana. Setiap ikatan mengandung sepasang elektron yang menghubungkan atom boron satu sama lainnya dalam bentuk pisang dengan sebuah proton (inti atom hidrogen) di tengah-tengah ikatan, dan berbagi elektron dengan kedua atom boron. Terdapat pula Ikatan tiga-pusat empat-elektron yang menjelaskan ikatan pada molekul hipervalen.

Ikatan tiga elektron dan satu elektron

Ikatan-ikatan dengan satu atau tiga elektron dapat ditemukan pada spesi radikal yang memiliki jumlah elektron gasal (ganjil). Contoh paling sederhana dari ikatan satu elektron dapat ditemukan pada kation molekul hidrogen H2+. Ikatan satu elektron seringkali memiliki energi ikat yang setengah kali dari ikatan dua elektron, sehingga ikatan ini disebut pula “ikatan setengah”. Namun terdapat pengecualian pada kasus dilitium. Ikatan dilitium satu elektron, Li2+, lebih kuat dari ikatan dilitium dua elektron Li2. Pengecualian ini dapat dijelaskan dengan hibridisasi dan efek kelopak dalam. [4]

Contoh sederhana dari ikatan tiga elektron dapat ditemukan pada kation dimer helium, He2+, dan dapat pula dianggap sebagai “ikatan setengah” karena menurut teori orbital molekul, elektron ke-tiganya merupakan orbital antiikat yang melemahkan ikatan dua elektron lainnya sebesar setengah. Molekul oksigen juga dapat dianggap memiliki dua ikatan tiga elektron dan satu ikatan dua elektron yang menjelaskan sifat paramagnetiknya.[5]

Molekul-molekul dengan ikatan elektron gasal biasanya sangat reaktif. Ikatan jenis ini biasanya hanya stabil pada atom-atom yang memiliki elektronegativitas yang sama.[5]

Ikatan aromatik

!Artikel utama untuk bagian ini adalah: Aromatisitas

Pada kebanyakan kasus, lokasi elektron tidak dapat ditandai dengan menggunakan garis (menandai dua elektron) ataupun titik (menandai elektron tungga). Ikatan aromatik yang terjadi pada molekul yang berbentuk cincin datar menunjukkan stabilitas yang lebih.

Pada benzena, 18 elektron ikatan mengikat 6 atom karbon bersama membentuk struktur cincin datar. “Orde” ikatan antara dua atom dapat dikatakan sebagai (18/6)/2=1,5 dan seluruh ikatan pada benzena tersebut adalah identik. Ikatan-ikatan ini dapat pula ditulis sebagai ikatan tunggal dan rangkap yang berselingan, namun hal ini kuranglah tepat mengingat ikatan rangkap dan ikatan tunggal memiliki kekuatan ikatan yang berbeda dan tidak identik.

Ikatan logam

!Artikel utama untuk bagian ini adalah: Ikatan logam

Pada ikatan logam, elektron-elektron ikatan terdelokalisasi pada kekisi (lattice) atom. Berbeda dengan senyawa organik, lokasi elektron yang berikat dan muatannya adalah statik. Oleh karena delokalisai yang menyebabkan elektron-elektron dapat bergerak bebas, senyawa ini memiliki sifat-sifat mirip logam dalam hal konduktivitas, duktilitas, dan kekerasan.

Ikatan antarmolekul

Terdapat empat jenis dasar ikatan yang dapat terbentuk antara dua atau lebih molekul, ion, ataupun atom. Gaya antarmolekul menyebabkan molekul saling menarik atau menolak satu sama lainnya. Seringkali hal ini menentukan sifat-sifat fisik sebuah zat (seperti pada titik leleh).

 

Dipol permanen ke dipol permanen

!Artikel utama untuk bagian ini adalah: Gaya antarmolekul

Perbedaan elektronegativitas yang bersar antara dua atom yang berikatan dengan kuat menyebabkan terbentuknya dipol (dwikutub). Dipol-dipol ini akan saling tarik-menarik ataupun tolak-menolak.

Ikatan hidrogen

!Artikel utama untuk bagian ini adalah: Ikatan hidrogen

Ikatan hidrogen bisa dikatakan sebagai dipol permanen yang sangat kuat seperti yang dijelaskan di atas. Namun, pada ikatan hidrogen, proton hidrogen berada sangat dekat dengan atom penderma elektron dan mirip dengan ikatan tiga-pusat dua-elektron seperti pada diborana. Ikatan hidrogen menjelaskan titik didih zat cair yang relatif tinggi seperti air, ammonia, dan hidrogen fluorida jika dibandingkan dengan senyawa-senyawa yang lebih berat lainnya pada kolom tabel periodik yang sama.

Dipol seketika ke dipol terimbas (van der Waals)

!Artikel utama untuk bagian ini adalah: Gaya van der Waals

Dipol seketika ke dipol terimbas, atau gaya van der Waals, adalah ikatan yang paling lemah, namun sering dijumpai di antara semua zat-zat kimia. Misalnya atom helium, pada satu titik waktu, awan elektronnya akan terlihat tidak seimbang dengan salah satu muatan negatif berada di sisi tertentu. Hal ini disebut sebagai dipol seketika (dwikutub seketika). Dipol ini dapat menarik maupun menolak elektron-elektron helium lainnya, dan menyebabkan dipol lainnya. Kedua atom akan seketika saling menarik sebelum muatannya diseimbangkan kembali untuk kemudian berpisah.

Interaksi kation-pi

!Artikel utama untuk bagian ini adalah: Interaksi kation-pi

Interaksi kation-pi terjadi di antara muatan negatif yang terlokalisasi dari elektron-elektron pada orbital \pi dengan muatan positif.

Elektron pada ikatan kimia

Banyak senyawa-senyawa sederhana yang melibatkan ikatan-ikatan kovalen. Molekul-molekul ini memiliki struktur yang dapat diprediksi dengan menggunakan teori ikatan valensi, dan sifat-sfiat atom yang terlibat dapat dipahami menggunakan konsep bilangan oksidasi. Senyawa lain yang mempunyai struktur ion dapat dipahami dengan menggunakan teori-teori fisika klasik.

Pada kasus ikatan ion, elektron pada umumnya terlokalisasi pada atom tertentu, dan elektron-elektron todal bergerak bebas di antara atom-atom. Setiap atom ditandai dengan muatan listrik keseluruhan untuk membantu pemahaman kita atas konsep distribusi orbital molekul. Gaya antara atom-atom secara garis besar dikarakterisasikan dengan potensial elektrostatik kontinum (malaran) isotropik.

Sebaliknya pada ikatan kovalen, rapatan elektron pada sebuah ikatan tidak ditandai pada atom individual, namun terdelokalisasikan pada MO di antara atom-atom. Teori kombinasi linear orbital yang diterima secara umum membantu menjelaskan struktur orbital dan energi-energinya berdasarkan orbtial-orbital dari atom-atom molekul. Tidak seperti ikatan ion, ikatan kovalen bisa memiliki sifat-sifat anisotropik, dan masing-masing memiliki nama-nama tersendiri seperti ikatan sigma dan ikatan pi.

Atom-atom juga dapat membentuk ikatan-ikatan yang memiliki sifat-sifat antara ikatan ion dan kovalen. Hal ini bisa terjadi karena definisi didasari pada delokalisasi elektron. Elektron-elektron dapat secara parsial terdelokalisasi di antara atom-atom. Ikatan sejenis ini biasanya disebut sebagai ikatan polar kovalen. Lihat pula elektronegativitas.

Oleh akrena itu, elektron-elektron pada orbital molekul dapat dikatakan menjadi terlokalisasi pada atom-atom tertentu atau terdelokalisasi di antara dua atau lebih atom. Jenis ikatan antara dua tom ditentukan dari seberapa besara rapatan elektron tersebut terlokalisasi ataupun terdelokalisasi pada ikatan antar atom.

Lihat pula

Referensi

  1. ^ Laidler, K. J. (1993) The World of Physical Chemistry, Oxford University Press, p. 347
  2. ^ James, H. H. (1933). “The Ground State of the Hydrogen Molecule”. Journal of Chemical Physics (American Institute of Physics) 1: 825 – 835.
  3. ^ Atkins, Peter (29 April 1997). Chemistry: Molecules, Matter and Change. New York: W. H. Freeman & Co.. hlm. 294- 295. ISBN 0-7167-3107-X.
  4. ^ Weinhold, F.; Landis, C. Valency and bonding, Cambridge, 2005; pp. 96-100.
  5. ^ a b Pauling, L. The Nature of the Chemical Bond. Cornell University Press, 1960.

Pranala luar

[sembunyikan]

l • b • s
Ikatan kimia
“Kuat”
“Lemah”
lainnya
Catatan: ikatan kuat yang paling lemah tidak seperlunya lebih kuat dari ikatan lemah yang paling kuat

Tatanama Senyawa (sekali lagi tentang tatanama)

Standard

Informasi terakhir yang penulis ketahui, ada lebih dari 10 juta senyawa yang dikenal saat ini.  Wow..! Apa aja tuh? Siapa yang mau nyebutin? Ha ha ha.. Capek dech..!  Untuk keperlun pendataan, tentulah sekian senyawa yang jumlahnya aduhai itu harus dinamai semua satu demi satu.  Gak boleh ada yang terlewat.  Siapa yang ngurusin semua itu?  Tenang aja, ada IUPAC, International Union of Pure and Applied Chemistry.  Perhimpunan ahli kimia murni dan terapan Internasional.

Bagi kita-kita yang kebetulan harus berurusan dengan penamaan senyawa kimia, “anak sekolahan, terutama kelas X”, saya punya sedikit tip yang mungkin bisa berguna, disamping bisa langsung sowan ke sumbernya sono (IUPAC) tentunya.

Dalam penamaan senyawa, sebaiknya dipahami bahwa penamaan senyawa dikelompokkan atas senyawa kovalen biner, senyawa ion, senyawa basa, senyawa garam dan senyawa asam.  Masing-masing punya aturan sendiri-sendiri.  Mari kita cermati satu per satu.  Senyawa kovalen biner diberi nama dengan cara menggabungkan nama masing-masing unsur dan diberi akhiran -ida (English : -ide).  Jumlah atom masing-masing unsur dicantumkan dengan prefiks/awalan mono, di, tri tetra dst.  Awalan mono pada nama unsur pertama tidak perlu dicantumkan.  Contoh :

NO       : nitrogen monoksida (nitrogen monoxide)
NO2    : nitrogen dioksida (nitrogen dioxide)
N2O    : dinitrogen monoksida (dinitrogen monokside)
N2O3 : dinitrogen trioksida (dinitrogen trioxide)
N2O5 : dinitrogen pentoksida (dinitrogen pentoxide)
PCl5   : fosfor pentaklorida (phosphorus pentachloride)

Kedua, senyawa ion.  Senyawa jenis ini diberi nama dengan cara menggabungkan nama ion kation dan nama anion penyusunnya, tanpa ada prefiks/awalan mono, di, tri dan sebagainya.  Contoh :
FeCl2 : besi(II) klorida atau iron(II) chloride  bukan besi(II) diklorida
FeCl3 : besi(III) klorida atau iron(III) chloride
Cu(NO3) : tembaga(I) nitrat atau copper(I) nitrate
Cu2S   : tembaga(I) sulfida
CuS      : tembaga(II) sulfida

Ketiga, senyawa basa.  Senyawa basa merupakan senyawa ion, tetapi anionnya berupa ion hidroksida (OH-).  Diberi nama dengan menyebutkan nama kation diikuti kata “hidroksida” atau “hidroxide“. Contoh :
NaOH : natrium hidroksida (hanya punya satu bilangan oksidasi, tidak disebutkan)
HgOH : raksa(I) hidroksida
Hg(OH)2 : raksa(II) hidroksida

Keempat, senyawa garam.  Merupakan senyawa ion, dengan ion negatifnya berupa selain OH-, O2-, N3-.  Penamaan sama dengan senyawa ion yang lain.

Kelima, senyawa asam.  Senyawa asam merupakan senyawa kovalen polar.  Dalam air terurai menjadi ion H+ dan ion sisa asam (anion sisa asam).  Senyawa ini diberi nama dengan cara menggabungkan kata “asam” dirangkai dengan nama ion sisa asamnya.  Contoh :
HCl : asam klorida
HBr : asam bromida
HNO2 : asam nitrit
HNO3 : asam nitrat

Demikian, semoga berguna.

Tatanama Senyawa Kimia (Chemical Nomenclature)

Standard

Tatanama senyawa dalam bahasa Inggris sebenarnya tidak terlalu sulituntuk dipahami. Banyak terdapat kemiripan dengan ketika kita menyatakannya dengan bahasa Indonesia. Berikut beberapa contoh senyawa beserta penamaannya dalam bahasa Inggris.

  1. HCl = hydrochloric acid
  2. HBr = hydrobromic acid
  3. HClO4 = perchlorate to perchloric acid
  4. HClO = hypochlorite to hypochlorous acid
  5. NaCl = sodium chloride
  6. CuSO4 = copper(II) sulfate
  7. Al(NO3)3 = aluminum nitrate
  8. CaCO3 = calcium carbonate
  9. SCl2 = sulfur dichloride
  10. Li2CrO4 = lithium chromate
  11. NaSCN = sodium thiocyanate
  12. KClO3 = potassium chlorate
  13. Ca(C2H3O2) = calcium acetate
  14. K2Cr2O7 = potassium dichromate
  15. Mg3(PO4)2 = magnesium phosphate
  16. Ba(NO2)2 = barium nitrate
  17. Hg2Cl2 = mercury(I) chloride
  18. NaHCO3 = sodium bicarbonate
  19. H2S = hydrosulfuric acid
  20. H2SO3 = sulfurous acid
  21. SO3 = sulfur trioxide
  22. CO2 = carbon dioxide
  23. P4S10 = tetraphosphorus decasulfide
  24. AlF3 = aluminum fluroide
  25. CCl4 = carbon tetracloride

Bila ingin mempelajari lebih lanjut silahkan klik di sini